Infinitely many solutions for a quasilinear Schrödinger equation with Hardy potentials

In this article, we study the following quasilinear Schrödinger equation −∆u − µ u |x| 2 + V(x)u − (∆(u 2 ))u = f(x, u), x ∈ R N, where V(x) is a given positive potential and the nonlinearity f(x, u) is allowed to be sign-changing. Under some suitable assumptions, we obtain the existence of infinite...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Shang Tingting
Liang Ruixi
Dokumentumtípus: Folyóirat
Megjelent: 2020
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Schrödinger egyenlet, Differenciálegyenlet
doi:10.14232/ejqtde.2020.1.50

Online Access:http://acta.bibl.u-szeged.hu/70163
Leíró adatok
Tartalmi kivonat:In this article, we study the following quasilinear Schrödinger equation −∆u − µ u |x| 2 + V(x)u − (∆(u 2 ))u = f(x, u), x ∈ R N, where V(x) is a given positive potential and the nonlinearity f(x, u) is allowed to be sign-changing. Under some suitable assumptions, we obtain the existence of infinitely many nontrivial solutions by a change of variable and Symmetric Mountain Pass Theorem.
ISSN:1417-3875