Infinitely many solutions for a quasilinear Schrödinger equation with Hardy potentials
In this article, we study the following quasilinear Schrödinger equation −∆u − µ u |x| 2 + V(x)u − (∆(u 2 ))u = f(x, u), x ∈ R N, where V(x) is a given positive potential and the nonlinearity f(x, u) is allowed to be sign-changing. Under some suitable assumptions, we obtain the existence of infinite...
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Folyóirat |
Megjelent: |
2020
|
Sorozat: | Electronic journal of qualitative theory of differential equations
|
Kulcsszavak: | Schrödinger egyenlet, Differenciálegyenlet |
doi: | 10.14232/ejqtde.2020.1.50 |
Online Access: | http://acta.bibl.u-szeged.hu/70163 |
Tartalmi kivonat: | In this article, we study the following quasilinear Schrödinger equation −∆u − µ u |x| 2 + V(x)u − (∆(u 2 ))u = f(x, u), x ∈ R N, where V(x) is a given positive potential and the nonlinearity f(x, u) is allowed to be sign-changing. Under some suitable assumptions, we obtain the existence of infinitely many nontrivial solutions by a change of variable and Symmetric Mountain Pass Theorem. |
---|---|
ISSN: | 1417-3875 |