Infinitely many solutions for a quasilinear Schrödinger equation with Hardy potentials
In this article, we study the following quasilinear Schrödinger equation −∆u − µ u |x| 2 + V(x)u − (∆(u 2 ))u = f(x, u), x ∈ R N, where V(x) is a given positive potential and the nonlinearity f(x, u) is allowed to be sign-changing. Under some suitable assumptions, we obtain the existence of infinite...
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Folyóirat |
Megjelent: |
2020
|
Sorozat: | Electronic journal of qualitative theory of differential equations
|
Kulcsszavak: | Schrödinger egyenlet, Differenciálegyenlet |
doi: | 10.14232/ejqtde.2020.1.50 |
Online Access: | http://acta.bibl.u-szeged.hu/70163 |
LEADER | 01178nas a2200205 i 4500 | ||
---|---|---|---|
001 | acta70163 | ||
005 | 20211020135207.0 | ||
008 | 201201s2020 hu o 0|| zxx d | ||
022 | |a 1417-3875 | ||
024 | 7 | |a 10.14232/ejqtde.2020.1.50 |2 doi | |
040 | |a SZTE Egyetemi Kiadványok Repozitórium |b hun | ||
041 | |a zxx | ||
100 | 1 | |a Shang Tingting | |
245 | 1 | 0 | |a Infinitely many solutions for a quasilinear Schrödinger equation with Hardy potentials |h [elektronikus dokumentum] / |c Shang Tingting |
260 | |c 2020 | ||
490 | 0 | |a Electronic journal of qualitative theory of differential equations | |
520 | 3 | |a In this article, we study the following quasilinear Schrödinger equation −∆u − µ u |x| 2 + V(x)u − (∆(u 2 ))u = f(x, u), x ∈ R N, where V(x) is a given positive potential and the nonlinearity f(x, u) is allowed to be sign-changing. Under some suitable assumptions, we obtain the existence of infinitely many nontrivial solutions by a change of variable and Symmetric Mountain Pass Theorem. | |
695 | |a Schrödinger egyenlet, Differenciálegyenlet | ||
700 | 0 | 1 | |a Liang Ruixi |e aut |
856 | 4 | 0 | |u http://acta.bibl.u-szeged.hu/70163/1/ejqtde_2020_050.pdf |z Dokumentum-elérés |