Infinitely many solutions for a quasilinear Schrödinger equation with Hardy potentials

In this article, we study the following quasilinear Schrödinger equation −∆u − µ u |x| 2 + V(x)u − (∆(u 2 ))u = f(x, u), x ∈ R N, where V(x) is a given positive potential and the nonlinearity f(x, u) is allowed to be sign-changing. Under some suitable assumptions, we obtain the existence of infinite...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Shang Tingting
Liang Ruixi
Dokumentumtípus: Folyóirat
Megjelent: 2020
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Schrödinger egyenlet, Differenciálegyenlet
doi:10.14232/ejqtde.2020.1.50

Online Access:http://acta.bibl.u-szeged.hu/70163
LEADER 01178nas a2200205 i 4500
001 acta70163
005 20211020135207.0
008 201201s2020 hu o 0|| zxx d
022 |a 1417-3875 
024 7 |a 10.14232/ejqtde.2020.1.50  |2 doi 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a zxx 
100 1 |a Shang Tingting 
245 1 0 |a Infinitely many solutions for a quasilinear Schrödinger equation with Hardy potentials  |h [elektronikus dokumentum] /  |c  Shang Tingting 
260 |c 2020 
490 0 |a Electronic journal of qualitative theory of differential equations 
520 3 |a In this article, we study the following quasilinear Schrödinger equation −∆u − µ u |x| 2 + V(x)u − (∆(u 2 ))u = f(x, u), x ∈ R N, where V(x) is a given positive potential and the nonlinearity f(x, u) is allowed to be sign-changing. Under some suitable assumptions, we obtain the existence of infinitely many nontrivial solutions by a change of variable and Symmetric Mountain Pass Theorem. 
695 |a Schrödinger egyenlet, Differenciálegyenlet 
700 0 1 |a Liang Ruixi  |e aut 
856 4 0 |u http://acta.bibl.u-szeged.hu/70163/1/ejqtde_2020_050.pdf  |z Dokumentum-elérés