On a parametric family of distance measures that includes the Hellinger and the Bures distances

In this paper we define a parametric family of certain two-variable maps on positive cones of C*-algebras. The square roots of the values of those maps under a faithful tracial positive linear functional (in the cases where the square roots are well defined, i.e., those values are non-negative real...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Komálovics Ábel
Molnár Lajos
Dokumentumtípus: Cikk
Megjelent: 2024
Sorozat:JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 529 No. 2
Tárgyszavak:
doi:10.1016/j.jmaa.2023.127226

mtmt:33742874
Online Access:http://publicatio.bibl.u-szeged.hu/37355
LEADER 01780nab a2200229 i 4500
001 publ37355
005 20250731155739.0
008 250731s2024 hu o 000 eng d
022 |a 0022-247X 
024 7 |a 10.1016/j.jmaa.2023.127226  |2 doi 
024 7 |a 33742874  |2 mtmt 
040 |a SZTE Publicatio Repozitórium  |b hun 
041 |a eng 
100 1 |a Komálovics Ábel 
245 1 3 |a On a parametric family of distance measures that includes the Hellinger and the Bures distances  |h [elektronikus dokumentum] /  |c  Komálovics Ábel 
260 |c 2024 
300 |a 31 
490 0 |a JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS  |v 529 No. 2 
520 3 |a In this paper we define a parametric family of certain two-variable maps on positive cones of C*-algebras. The square roots of the values of those maps under a faithful tracial positive linear functional (in the cases where the square roots are well defined, i.e., those values are non-negative real numbers on the whole cones) as two-variable numerical functions can be considered as a family of potential distance measures which includes the well known Hellinger and Bures metrics. We study that family from various points of view. The main questions concern the mentioned problem of well-definedness and, whenever we have an affirmative answer to that question, the problem whether those distance measures are true metrics. Besides, we obtain some related trace characterizations. Our study is not complete, we formulate a few probably quite difficult open questions.(c) 2023 Elsevier Inc. All rights reserved. 
650 4 |a Matematika 
700 0 1 |a Molnár Lajos  |e aut 
856 4 0 |u http://publicatio.bibl.u-szeged.hu/37355/1/OnaparametricfamilyofdistancemeasuresthatincludestheHellingerandtheBuresdistances_ML.pdf  |z Dokumentum-elérés