Branching processes in nearly degenerate varying environment

We investigate branching processes in varying environment, for which and , , where stands for the offspring mean in generation n . Since subcritical regimes dominate, such processes die out almost surely, therefore to obtain a nontrivial limit we consider two scenarios: conditioning on nonextinction...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Kevei Péter
Kubatovics Kata
Dokumentumtípus: Cikk
Megjelent: 2024
Sorozat:JOURNAL OF APPLIED PROBABILITY 61 No. 4
Tárgyszavak:
doi:10.1017/jpr.2024.15

mtmt:34848012
Online Access:http://publicatio.bibl.u-szeged.hu/37099
Leíró adatok
Tartalmi kivonat:We investigate branching processes in varying environment, for which and , , where stands for the offspring mean in generation n . Since subcritical regimes dominate, such processes die out almost surely, therefore to obtain a nontrivial limit we consider two scenarios: conditioning on nonextinction, and adding immigration. In both cases we show that the process converges in distribution without normalization to a nondegenerate compound-Poisson limit law. The proofs rely on the shape function technique, worked out by Kersting (2020).
Terjedelem/Fizikai jellemzők:1107-1126
ISSN:0021-9002