Uniform convergence of sine integral-series
In this paper we define the class GMSF(alpha, beta, gamma) of General Monotone Sequence of Functions with majorants alpha, beta, gamma : (R) over bar (2)(+) -> (R) over bar (+), (R) over bar (+) := [0, infinity). For a sequence of admissible functions {f(k)(t)}(k=1)(infinity) subset of C belongin...
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Cikk |
Megjelent: |
2022
|
Sorozat: | QUAESTIONES MATHEMATICAE
45 No. 5 |
Tárgyszavak: | |
doi: | 10.2989/16073606.2021.1891152 |
mtmt: | 32355438 |
Online Access: | http://publicatio.bibl.u-szeged.hu/37067 |
Tartalmi kivonat: | In this paper we define the class GMSF(alpha, beta, gamma) of General Monotone Sequence of Functions with majorants alpha, beta, gamma : (R) over bar (2)(+) -> (R) over bar (+), (R) over bar (+) := [0, infinity). For a sequence of admissible functions {f(k)(t)}(k=1)(infinity) subset of C belonging to this class we find necessary and sufficient conditions under which the sine integral-seriesintegral(infinity)(0)Sigma(k=1) f(k)(t) sin ku sin tv dtconverges in the regular sense uniformly in (u, v) is an element of <(R)over bar(+)(2). |
---|---|
Terjedelem/Fizikai jellemzők: | 711-722 |
ISSN: | 1607-3606 |