Decidability Boundaries for the Finite-Image Property of Weighted Finite Automata

A weighted finite automaton has the finite-image property if the image of the weighted language associated with it is finite. We show two undecidability results concerning the finite-image property of weighted finite automata over semirings, respectively strong bimonoids. Firstly, we give a computab...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Droste Manfred
Fülöp Zoltán
Kószó Dávid
Dokumentumtípus: Cikk
Megjelent: 2023
Sorozat:INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE 34 No. 6
Tárgyszavak:
doi:10.1142/S0129054123450041

mtmt:34153907
Online Access:http://publicatio.bibl.u-szeged.hu/36185
Leíró adatok
Tartalmi kivonat:A weighted finite automaton has the finite-image property if the image of the weighted language associated with it is finite. We show two undecidability results concerning the finite-image property of weighted finite automata over semirings, respectively strong bimonoids. Firstly, we give a computable idempotent commutative past-finite ordered semiring such that it is undecidable, for an arbitrary deterministic weighted finite automaton A over that semiring, whether A has the finite-image property. Secondly, we give a computable commutative past-finite monotonic ordered strong bimonoid such that it is undecidable, for an arbitrary weighted finite automaton A over that strong bimonoid, whether A has the finite-image property. This shows that recent decidability results for suitable weighted finite automata over past-finite monotonic strong bimonoids cannot be extended to natural classes of ordered semirings and ordered strong bimonoids without further assumptions.
Terjedelem/Fizikai jellemzők:633-653
ISSN:0129-0541