A Central Limit Theorem for Random Disc-Polygons in Smooth Convex Discs

In this paper we prove a quantitative central limit theorem for the area of uniform random disc-polygons in smooth convex discs whose boundary is C^2_+ C + 2 . We use Stein’s method and the asymptotic lower bound for the variance of the area proved by Fodor, Grünfelder and Vígh (Doc Math 27: 1015-10...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Fodor Ferenc
Papvári Dániel I.
Dokumentumtípus: Cikk
Megjelent: 2024
Sorozat:DISCRETE AND COMPUTATIONAL GEOMETRY
Tárgyszavak:
doi:10.1007/s00454-024-00701-6

mtmt:35579584
Online Access:http://publicatio.bibl.u-szeged.hu/35180
Leíró adatok
Tartalmi kivonat:In this paper we prove a quantitative central limit theorem for the area of uniform random disc-polygons in smooth convex discs whose boundary is C^2_+ C + 2 . We use Stein’s method and the asymptotic lower bound for the variance of the area proved by Fodor, Grünfelder and Vígh (Doc Math 27: 1015-1029, 2022).
ISSN:0179-5376