Phosphorus-centered ion-molecule reactions benchmark ab initio characterization of the potential energy surfaces of the X<SUP>-</SUP> + PH<sub>2</sub>Y [X, Y = F, Cl, Br, I] systems /

In the present work we determine the benchmark relative energies and geometries of all the relevant stationary points of the X- + PH2Y [X, Y = F, Cl, Br, I] identity and non-identity reactions using state-of-the-art electronic-structure methods. These phosphorus-centered ion-molecule reactions follo...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Ballay Boldizsar
Szűcs Tímea
Papp Dóra
Czakó Gábor
Dokumentumtípus: Cikk
Megjelent: 2023
Sorozat:PHYSICAL CHEMISTRY CHEMICAL PHYSICS 25 No. 42
Tárgyszavak:
doi:10.1039/d3cp03733a

mtmt:34240025
Online Access:http://publicatio.bibl.u-szeged.hu/31846
Leíró adatok
Tartalmi kivonat:In the present work we determine the benchmark relative energies and geometries of all the relevant stationary points of the X- + PH2Y [X, Y = F, Cl, Br, I] identity and non-identity reactions using state-of-the-art electronic-structure methods. These phosphorus-centered ion-molecule reactions follow two main reaction routes: bimolecular nucleophilic substitution (S(N)2), leading to Y- + PH2X, and proton transfer, resulting in HX + PHY- products. The S(N)2 route can proceed through Walden-inversion, front-side-attack retention, and double-/multiple-inversion pathways. In addition, we also identify the following product channels: H--formation, PH2-- and PH2-formation, (PH)-P-1- and (PH)-P-3-formation, H-2-formation and HY + PHX- formation. The benchmark classical relative energies are obtained by taking into account the core-correlation, scalar relativistic, and post-(T) corrections, which turn out to be necessary to reach subchemical (<1 kcal mol(-1)) accuracy of the results. Classical relative energies are augmented with zero-point-energy contributions to gain the benchmark adiabatic energies.
Terjedelem/Fizikai jellemzők:28925-28940
ISSN:1463-9076