Caffeine-Induced Acute and Delayed Responses in Cerebral Metabolism of Control and Schizophrenia-like Wisket Rats

Recently, morphological impairments have been detected in the brain of a triple-hit rat schizophrenia model (Wisket), and delayed depressive effects of caffeine treatment in both control and Wisket animals have also been shown. The aims of this study were to determine the basal and caffeine-induced...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Horváth Gyöngyi
Kertész István
Nagy Tamás
Adlan Leatitia Gabriella
Kékesi Gabriella
Büki Alexandra
Tuboly Gábor
Trencsényi György
Dokumentumtípus: Cikk
Megjelent: 2022
Sorozat:INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES 23 No. 15
Tárgyszavak:
doi:10.3390/ijms23158186

mtmt:33041446
Online Access:http://publicatio.bibl.u-szeged.hu/27152
Leíró adatok
Tartalmi kivonat:Recently, morphological impairments have been detected in the brain of a triple-hit rat schizophrenia model (Wisket), and delayed depressive effects of caffeine treatment in both control and Wisket animals have also been shown. The aims of this study were to determine the basal and caffeine-induced acute (30 min) and delayed (24 h) changes in the cerebral (18)fluorodeoxyglucose (F-18-FDG) uptake by positron emission tomography (PET) in control and Wisket rats. No significant differences were identified in the basal whole-brain metabolism between the two groups, and the metabolism was not modified acutely by a single intraperitoneal caffeine (20 mg/kg) injection in either group. However, one day after caffeine administration, significantly enhanced F-18-FDG uptake was detected in the whole brain and the investigated areas (hippocampus, striatum, thalamus, and hypothalamus) in the control group. Although the Wisket animals showed only moderate enhancements in the F-18-FDG uptake, significantly lower brain metabolism was observed in this group than in the caffeine-treated control group. This study highlights that the basal brain metabolism of Wisket animals was similar to control rats, and that was not influenced acutely by single caffeine treatment at the whole-brain level. Nevertheless, the distinct delayed responsiveness to this psychostimulant in Wisket model rats suggests impaired control of the cerebral metabolism.
Terjedelem/Fizikai jellemzők:12
ISSN:1661-6596