Self-Similarity Analysis of the Nonlinear Schrodinger Equation in the Madelung Form
In the present study a particular case of Gross-Pitaevskii or nonlinear Schrodinger equation is rewritten to a form similar to a hydrodynamic Euler equation using the Madelung transformation. The obtained system of differential equations is highly nonlinear. Regarding the solutions, a larger coeffic...
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Cikk |
Megjelent: |
2018
|
Sorozat: | ADVANCES IN MATHEMATICAL PHYSICS
2018 |
Tárgyszavak: | |
doi: | 10.1155/2018/7087295 |
mtmt: | 30307727 |
Online Access: | http://publicatio.bibl.u-szeged.hu/27094 |
Tartalmi kivonat: | In the present study a particular case of Gross-Pitaevskii or nonlinear Schrodinger equation is rewritten to a form similar to a hydrodynamic Euler equation using the Madelung transformation. The obtained system of differential equations is highly nonlinear. Regarding the solutions, a larger coefficient of the nonlinear term yields stronger deviation of the solution from the linear case. |
---|---|
Terjedelem/Fizikai jellemzők: | 5 |
ISSN: | 1687-9120 |