Impact of Short-Time Micronization on Structural and Thermal Properties of Sugar Beet Fibre and Inulin

Research background. By tailoring dietary fibre structural and physicochemical properties, their functionality and applicability can be remarkably increased. One of the approaches used in this respect is fibre particle size reduction. Accordingly, the present study explores the impact of short-time...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Djordjević Miljana
Ambrus Rita
Maravić Nikola
Vidović Senka
Šoronja-Simović Dragana
Petrović Jovana
Šereš Zita
Dokumentumtípus: Cikk
Megjelent: 2022
Sorozat:FOOD TECHNOLOGY AND BIOTECHNOLOGY 60 No. 4
Tárgyszavak:
doi:10.17113/ftb.60.04.22.7734

mtmt:33191340
Online Access:http://publicatio.bibl.u-szeged.hu/26289
Leíró adatok
Tartalmi kivonat:Research background. By tailoring dietary fibre structural and physicochemical properties, their functionality and applicability can be remarkably increased. One of the approaches used in this respect is fibre particle size reduction. Accordingly, the present study explores the impact of short-time micronization in a planetary ball mill on structural and thermal changes of modified and commercial sugar beet fibres, inulin, and sucrose in terms of their potential application as food excipients. Experimental approach. Short-time micronization in a planetary ball mill (30 and 60 min) was applied for particle size reduction of modified and commercial sugar beet fibres, inulin, and sucrose as less energy consumptive and less destructive approach compared to long-time micronization. Dietary fibre and sucrose samples were characterised in terms of particle size, morphology, bounds and functional groups presence, crystallinity and thermal properties, prior to as well as upon conducted short-time micronization. Results and conclusions. Successful particle size reduction to micron-scale was obtained already after 30 min of micronization in most of the samples without significant changes in thermal properties and crystallinity as well as present functional groups. An enhanced particle size decrease with prolonged micronization time (60 min) was noticed for modified sugar beet fibres with slightly wider particle size distribution compared to other examined samples. Furthermore, morphology and exposure of the present functional groups in samples were altered by the micronization which is favourable in terms of their further application as excipients in the food matrix. Novelty and scientific contribution. The corresponding research reports the short-time micronization impact on sugar beet fibres and modified sugar beet fibres, inulin and sucrose for the first time hence contributing to the widening of their application as excipients in diverse products.
Terjedelem/Fizikai jellemzők:543-555
ISSN:1330-9862