Tiling a circular disc with congruent pieces

In this note we prove that any monohedral tiling of the closed circular unit disc with $k \leq 3$ topological discs as tiles has a $k$-fold rotational symmetry. This result yields the first nontrivial estimate about the minimum number of tiles in a monohedral tiling of the circular disc in which not...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Kurusa Árpád
Lángi Zsolt
Vígh Viktor
Dokumentumtípus: Cikk
Megjelent: 2020
Sorozat:MEDITERRANEAN JOURNAL OF MATHEMATICS 17 No. 5
doi:10.1007/s00009-020-01595-3

mtmt:31407382
Online Access:http://publicatio.bibl.u-szeged.hu/19353
LEADER 01220nab a2200229 i 4500
001 publ19353
005 20200826090021.0
008 200826s2020 hu o 0|| zxx d
022 |a 1660-5446 
024 7 |a 10.1007/s00009-020-01595-3  |2 doi 
024 7 |a 31407382  |2 mtmt 
040 |a SZTE Publicatio Repozitórium  |b hun 
041 |a zxx 
100 1 |a Kurusa Árpád 
245 1 0 |a Tiling a circular disc with congruent pieces  |h [elektronikus dokumentum] /  |c  Kurusa Árpád 
260 |c 2020 
300 |a Azonosító: 156-Terjedelem: 15 p 
490 0 |a MEDITERRANEAN JOURNAL OF MATHEMATICS  |v 17 No. 5 
520 3 |a In this note we prove that any monohedral tiling of the closed circular unit disc with $k \leq 3$ topological discs as tiles has a $k$-fold rotational symmetry. This result yields the first nontrivial estimate about the minimum number of tiles in a monohedral tiling of the circular disc in which not all tiles contain the center, and the first step towards answering a question of Stein appearing in the problem book of Croft, Falconer and Guy in 1994. 
700 0 1 |a Lángi Zsolt  |e aut 
700 0 1 |a Vígh Viktor  |e aut 
856 4 0 |u http://publicatio.bibl.u-szeged.hu/19353/1/s00009-020-01595-3.pdf  |z Dokumentum-elérés