Tiling a circular disc with congruent pieces
In this note we prove that any monohedral tiling of the closed circular unit disc with $k \leq 3$ topological discs as tiles has a $k$-fold rotational symmetry. This result yields the first nontrivial estimate about the minimum number of tiles in a monohedral tiling of the circular disc in which not...
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Cikk |
Megjelent: |
2020
|
Sorozat: | MEDITERRANEAN JOURNAL OF MATHEMATICS
17 No. 5 |
doi: | 10.1007/s00009-020-01595-3 |
mtmt: | 31407382 |
Online Access: | http://publicatio.bibl.u-szeged.hu/19353 |
LEADER | 01220nab a2200229 i 4500 | ||
---|---|---|---|
001 | publ19353 | ||
005 | 20200826090021.0 | ||
008 | 200826s2020 hu o 0|| zxx d | ||
022 | |a 1660-5446 | ||
024 | 7 | |a 10.1007/s00009-020-01595-3 |2 doi | |
024 | 7 | |a 31407382 |2 mtmt | |
040 | |a SZTE Publicatio Repozitórium |b hun | ||
041 | |a zxx | ||
100 | 1 | |a Kurusa Árpád | |
245 | 1 | 0 | |a Tiling a circular disc with congruent pieces |h [elektronikus dokumentum] / |c Kurusa Árpád |
260 | |c 2020 | ||
300 | |a Azonosító: 156-Terjedelem: 15 p | ||
490 | 0 | |a MEDITERRANEAN JOURNAL OF MATHEMATICS |v 17 No. 5 | |
520 | 3 | |a In this note we prove that any monohedral tiling of the closed circular unit disc with $k \leq 3$ topological discs as tiles has a $k$-fold rotational symmetry. This result yields the first nontrivial estimate about the minimum number of tiles in a monohedral tiling of the circular disc in which not all tiles contain the center, and the first step towards answering a question of Stein appearing in the problem book of Croft, Falconer and Guy in 1994. | |
700 | 0 | 1 | |a Lángi Zsolt |e aut |
700 | 0 | 1 | |a Vígh Viktor |e aut |
856 | 4 | 0 | |u http://publicatio.bibl.u-szeged.hu/19353/1/s00009-020-01595-3.pdf |z Dokumentum-elérés |