Inequalities for hyperconvex sets

An r-hyperconvex body is a set in the d-dimensional Euclidean space Ed that is the intersection of a family of closed balls of radius r. We prove the analogue of the classical Blaschke-Santallo inequality for r-hyperconvex bodies, and we also establish a stability version of it. The other main resul...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Fodor Ferenc
Kurusa Árpád
Vígh Viktor
Dokumentumtípus: Cikk
Megjelent: 2016
Sorozat:ADVANCES IN GEOMETRY 16 No. 3
doi:10.1515/advgeom-2016-0013

mtmt:2821433
Online Access:http://publicatio.bibl.u-szeged.hu/18296
Leíró adatok
Tartalmi kivonat:An r-hyperconvex body is a set in the d-dimensional Euclidean space Ed that is the intersection of a family of closed balls of radius r. We prove the analogue of the classical Blaschke-Santallo inequality for r-hyperconvex bodies, and we also establish a stability version of it. The other main result of the paper is an r-hyperconvex version of the reverse isoperimetric inequality in the plane.
Terjedelem/Fizikai jellemzők:337-348
ISSN:1615-715X