The arity gap of order-preserving functions and extensions of pseudo-Boolean functions

The aim of this paper is to classify order-preserving functions according to their arity gap. Noteworthy examples of order- preserving functions are the so-called aggregation functions. We first explicitly classify the Lovasz extensions of pseudo- Boolean functions according to their arity gap. Th...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Couceiro Miguel
Lehtonen Erkko
Waldhauser Tamás
Dokumentumtípus: Cikk
Megjelent: 2012
Sorozat:DISCRETE APPLIED MATHEMATICS 160 No. 4-5
doi:10.1016/j.dam.2011.07.024

mtmt:1949526
Online Access:http://publicatio.bibl.u-szeged.hu/17330
Leíró adatok
Tartalmi kivonat:The aim of this paper is to classify order-preserving functions according to their arity gap. Noteworthy examples of order- preserving functions are the so-called aggregation functions. We first explicitly classify the Lovasz extensions of pseudo- Boolean functions according to their arity gap. Then we consider the class of order-preserving functions between partially ordered sets, and establish a similar explicit classification for this function class. (c) 2011 Elsevier B.V. All rights reserved.
Terjedelem/Fizikai jellemzők:383-390
ISSN:0166-218X