Structural and Functional Hierarchy in Photosynthetic Energy Conversion—from Molecules to Nanostructures

Basic principles of structural and functional requirements of photosynthetic energy conversion in hierarchically organized machineries are reviewed. Blueprints of photosynthesis, the energetic basis of virtually all life on Earth, can serve the basis for constructing artificial light energy-converti...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Szabó Tibor
Magyar Melinda
Hajdu Kata
Dorogi Márta
Nyerki Emil
Tóth Tünde
Lingvay Mónika
Garab Győző
Hernádi Klára
Nagy László
Dokumentumtípus: Cikk
Megjelent: 2015
Sorozat:NANOSCALE RESEARCH LETTERS 10
doi:10.1186/s11671-015-1173-z

mtmt:2989929
Online Access:http://publicatio.bibl.u-szeged.hu/16991
LEADER 03268nab a2200313 i 4500
001 publ16991
005 20191010111744.0
008 191010s2015 hu o 0|| zxx d
022 |a 1931-7573 
024 7 |a 10.1186/s11671-015-1173-z  |2 doi 
024 7 |a 2989929  |2 mtmt 
040 |a SZTE Publicatio Repozitórium  |b hun 
041 |a zxx 
100 1 |a Szabó Tibor 
245 1 0 |a Structural and Functional Hierarchy in Photosynthetic Energy Conversion—from Molecules to Nanostructures  |h [elektronikus dokumentum] /  |c  Szabó Tibor 
260 |c 2015 
300 |a Terjedelem: 12 p-Azonosító: 458 
490 0 |a NANOSCALE RESEARCH LETTERS  |v 10 
520 3 |a Basic principles of structural and functional requirements of photosynthetic energy conversion in hierarchically organized machineries are reviewed. Blueprints of photosynthesis, the energetic basis of virtually all life on Earth, can serve the basis for constructing artificial light energy-converting molecular devices. In photosynthetic organisms, the conversion of light energy into chemical energy takes places in highly organized fine-tunable systems with structural and functional hierarchy. The incident photons are absorbed by light-harvesting complexes, which funnel the excitation energy into reaction centre (RC) protein complexes containing redox-active chlorophyll molecules; the primary charge separations in the RCs are followed by vectorial transport of charges (electrons and protons) in the photosynthetic membrane. RCs possess properties that make their use in solar energy-converting and integrated optoelectronic systems feasible. Therefore, there is a large interest in many laboratories and in the industry toward their use in molecular devices. RCs have been bound to different carrier matrices, with their photophysical and photochemical activities largely retained in the nano-systems and with electronic connection to conducting surfaces. We show examples of RCs bound to carbon-based materials (functionalized and non-functionalized single- and multiwalled carbon nanotubes), transitional metal oxides (ITO) and conducting polymers and porous silicon and characterize their photochemical activities. Recently, we adapted several physical and chemical methods for binding RCs to different nanomaterials. It is generally found that the P+(QAQB)− charge pair, which is formed after single saturating light excitation is stabilized after the attachment of the RCs to the nanostructures, which is followed by slow reorganization of the protein structure. Measuring the electric conductivity in a direct contact mode or in electrochemical cell indicates that there is an electronic interaction between the protein and the inorganic carrier matrices. This can be a basis of sensing element of bio-hybrid device for biosensor and/or optoelectronic applications. © 2015, Szabó et al. 
700 0 1 |a Magyar Melinda  |e aut 
700 0 1 |a Hajdu Kata  |e aut 
700 0 1 |a Dorogi Márta  |e aut 
700 0 1 |a Nyerki Emil  |e aut 
700 0 1 |a Tóth Tünde  |e aut 
700 0 1 |a Lingvay Mónika  |e aut 
700 0 1 |a Garab Győző  |e aut 
700 0 1 |a Hernádi Klára  |e aut 
700 0 1 |a Nagy László  |e aut 
856 4 0 |u http://publicatio.bibl.u-szeged.hu/16991/1/SzT2015_nanoscale_res_lett.pdf  |z Dokumentum-elérés