Structural and Functional Hierarchy in Photosynthetic Energy Conversion—from Molecules to Nanostructures

Basic principles of structural and functional requirements of photosynthetic energy conversion in hierarchically organized machineries are reviewed. Blueprints of photosynthesis, the energetic basis of virtually all life on Earth, can serve the basis for constructing artificial light energy-converti...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Szabó Tibor
Magyar Melinda
Hajdu Kata
Dorogi Márta
Nyerki Emil
Tóth Tünde
Lingvay Mónika
Garab Győző
Hernádi Klára
Nagy László
Dokumentumtípus: Cikk
Megjelent: 2015
Sorozat:NANOSCALE RESEARCH LETTERS 10
doi:10.1186/s11671-015-1173-z

mtmt:2989929
Online Access:http://publicatio.bibl.u-szeged.hu/16991
Leíró adatok
Tartalmi kivonat:Basic principles of structural and functional requirements of photosynthetic energy conversion in hierarchically organized machineries are reviewed. Blueprints of photosynthesis, the energetic basis of virtually all life on Earth, can serve the basis for constructing artificial light energy-converting molecular devices. In photosynthetic organisms, the conversion of light energy into chemical energy takes places in highly organized fine-tunable systems with structural and functional hierarchy. The incident photons are absorbed by light-harvesting complexes, which funnel the excitation energy into reaction centre (RC) protein complexes containing redox-active chlorophyll molecules; the primary charge separations in the RCs are followed by vectorial transport of charges (electrons and protons) in the photosynthetic membrane. RCs possess properties that make their use in solar energy-converting and integrated optoelectronic systems feasible. Therefore, there is a large interest in many laboratories and in the industry toward their use in molecular devices. RCs have been bound to different carrier matrices, with their photophysical and photochemical activities largely retained in the nano-systems and with electronic connection to conducting surfaces. We show examples of RCs bound to carbon-based materials (functionalized and non-functionalized single- and multiwalled carbon nanotubes), transitional metal oxides (ITO) and conducting polymers and porous silicon and characterize their photochemical activities. Recently, we adapted several physical and chemical methods for binding RCs to different nanomaterials. It is generally found that the P+(QAQB)− charge pair, which is formed after single saturating light excitation is stabilized after the attachment of the RCs to the nanostructures, which is followed by slow reorganization of the protein structure. Measuring the electric conductivity in a direct contact mode or in electrochemical cell indicates that there is an electronic interaction between the protein and the inorganic carrier matrices. This can be a basis of sensing element of bio-hybrid device for biosensor and/or optoelectronic applications. © 2015, Szabó et al.
Terjedelem/Fizikai jellemzők:Terjedelem: 12 p-Azonosító: 458
ISSN:1931-7573