Plant leaf extracts as photocatalytic activity tailoring agents for BiOCl towards environmental remediation

The inducement of plant leaf extracts for the synthesis of various nanostructures has intrigued researchers across the earth to explore the mechanisms of biologically active compounds present in the plants. Herein, a green modified hydrolysis route has been employed for the synthesis of bismuth oxyc...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Garg Seema
Yadav Mohit
Chandra Amrish
Gahlawat Soniya
Ingole Pravin P.
Pap Zsolt
Hernádi Klára
Dokumentumtípus: Cikk
Megjelent: 2018
Sorozat:ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 165
doi:10.1016/j.ecoenv.2018.09.024

mtmt:3414261
Online Access:http://publicatio.bibl.u-szeged.hu/16965
Leíró adatok
Tartalmi kivonat:The inducement of plant leaf extracts for the synthesis of various nanostructures has intrigued researchers across the earth to explore the mechanisms of biologically active compounds present in the plants. Herein, a green modified hydrolysis route has been employed for the synthesis of bismuth oxychloride i.e. BiOCl-N, BiOCl-T and BiOCl-A using plant extracts of Azadirachta indica (Neem), Ocimum sanctum (Tulsi), and Saraca indica (Ashoka), and; simultaneously, without plant extract (BiOCl-C), respectively. The as-prepared samples were examined by several microscopic and spectroscopic techniques which revealed that the biosynthesized BiOCl attained certain favorable features such as hierarchical nano-flower morphology, higher porosity, higher specific surface area and narrower band gap compared to BiOCl-C. The degradation of methyl orange (MO) and bisphenol A (BPA) using biosynthesized BiOCl were improved by 21.5% within 90 min and 18.2% within 600 min under visible light irradiation, respectively. The photocurrent response, electrochemical impedance spectroscopy (EIS) and photoluminescence (PL) studies indicated the effective inhibition of the electron-hole pair recombination and enhanced photocatalytic activity of the biosynthesized BiOCl.
Terjedelem/Fizikai jellemzők:357-366
ISSN:0147-6513