Identifying rotational Radon transforms

We show classes of test functions so that dilational and rotational invariances of the image $\r^{}_{{\Cal S},\mu}f$ of such a test function~$f$ determines dilational and rotational invariances of rotational Radon transform $\r^{}_{{\Cal S},\mu}$. Then we determine the defining flower $\Cal S$ and w...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerző: Kurusa Árpád
Dokumentumtípus: Cikk
Megjelent: 2013
Sorozat:PERIODICA MATHEMATICA HUNGARICA 67 No. 2
doi:10.1007/s10998-013-5391-9

mtmt:2181350
Online Access:http://publicatio.bibl.u-szeged.hu/15943
Leíró adatok
Tartalmi kivonat:We show classes of test functions so that dilational and rotational invariances of the image $\r^{}_{{\Cal S},\mu}f$ of such a test function~$f$ determines dilational and rotational invariances of rotational Radon transform $\r^{}_{{\Cal S},\mu}$. Then we determine the defining flower $\Cal S$ and weight $\mu$ of a conformal Radon transform $\r^{}_{{\Cal S},\mu}$ in terms of the image $\r^{}_{{\Cal S},\mu}f$ of an unknown function that is a sum of an $\lt$ function and finitely many Dirac distribution if the flower $\Cal S$ is not self tangent.
Terjedelem/Fizikai jellemzők:187-209
ISSN:0031-5303