Identifying rotational Radon transforms
We show classes of test functions so that dilational and rotational invariances of the image $\r^{}_{{\Cal S},\mu}f$ of such a test function~$f$ determines dilational and rotational invariances of rotational Radon transform $\r^{}_{{\Cal S},\mu}$. Then we determine the defining flower $\Cal S$ and w...
Elmentve itt :
Szerző: | |
---|---|
Dokumentumtípus: | Cikk |
Megjelent: |
2013
|
Sorozat: | PERIODICA MATHEMATICA HUNGARICA
67 No. 2 |
doi: | 10.1007/s10998-013-5391-9 |
mtmt: | 2181350 |
Online Access: | http://publicatio.bibl.u-szeged.hu/15943 |
Tartalmi kivonat: | We show classes of test functions so that dilational and rotational invariances of the image $\r^{}_{{\Cal S},\mu}f$ of such a test function~$f$ determines dilational and rotational invariances of rotational Radon transform $\r^{}_{{\Cal S},\mu}$. Then we determine the defining flower $\Cal S$ and weight $\mu$ of a conformal Radon transform $\r^{}_{{\Cal S},\mu}$ in terms of the image $\r^{}_{{\Cal S},\mu}f$ of an unknown function that is a sum of an $\lt$ function and finitely many Dirac distribution if the flower $\Cal S$ is not self tangent. |
---|---|
Terjedelem/Fizikai jellemzők: | 187-209 |
ISSN: | 0031-5303 |