Ceva's and Menelaus' theorems characterize the hyperbolic geometry among Hilbert geometries
If a Hilbert geometry satisfies a rather weak version of either Ceva’s or Menelaus’ theorem for every triangle, then it is hyperbolic.
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Cikk |
Megjelent: |
2015
|
Sorozat: | JOURNAL OF GEOMETRY
106 No. 3 |
doi: | 10.1007/s00022-014-0258-7 |
mtmt: | 2821394 |
Online Access: | http://publicatio.bibl.u-szeged.hu/15939 |
Tartalmi kivonat: | If a Hilbert geometry satisfies a rather weak version of either Ceva’s or Menelaus’ theorem for every triangle, then it is hyperbolic. |
---|---|
Terjedelem/Fizikai jellemzők: | 465-470 |
ISSN: | 0047-2468 |