Titania nanotube stabilized BiOCl nanoparticles in visible-light photocatalysis
Photocatalysis is a green approach in environmental organic pollutant decomposition. Lately, considerable improvement in the activity of photocatalysts has been achieved with the realization of p-n heterostructures due to the lifetime extension of the photogenerated charge carriers. Herein, we repor...
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Cikk |
Megjelent: |
2017
|
Sorozat: | RSC ADVANCES
7 No. 27 |
doi: | 10.1039/c6ra28490f |
mtmt: | 3211576 |
Online Access: | http://publicatio.bibl.u-szeged.hu/11474 |
Tartalmi kivonat: | Photocatalysis is a green approach in environmental organic pollutant decomposition. Lately, considerable improvement in the activity of photocatalysts has been achieved with the realization of p-n heterostructures due to the lifetime extension of the photogenerated charge carriers. Herein, we report a facile synthesis approach for decorating n-type titanate nanotubes with p-type V-VI-VII compound semiconductor BiOCl nanoparticles. It is well-known that BiOX (X = Cl, Br, I) materials form nanometer-thick platelets, which can eventually assemble into micrometer size flower-like 3D structures. Here, we demonstrate that the tubular titanate support can stabilize BiOCl on its surface in the form of nanoparticles measuring a few nanometers in diameter, instead of forming the well-known bismuth-oxyhalide nanoflowers. Subsequent calcination at 400 °C transforms the pristine titanate structures into one-dimensional anatase nanotubes, along with the formation of a heterojunction at the interface of the emerging Bi2Ti2O7 and anatase phases. The resulting nanocomposite shows activity in visible-light photocatalytic test reactions. © The Royal Society of Chemistry. |
---|---|
Terjedelem/Fizikai jellemzők: | 16410-16422 |
ISSN: | 2046-2069 |