Érzékszervi kedveltség predikciója mesterséges neurális hálózatokkal, fagyasztott csemegekukorica-fajták példáján bemutatva
A nemzeti és nemzetközi fajtajegyzékben található csemegekukorica (Zea mays var. saccharata L.) hibridek fajtákra lebontott érzékszervi profiljellemzőiről, fogyasztói preferenciáiról a rendelkezésünkre álló irodalmi forrásokban ismereteink szerint csak néhány publikáció született. Kutatásunkban a me...
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Cikk |
Megjelent: |
WESSLING Nemzetközi Kutató és Oktató Központ Közhasznú Nonprofit Kft.
Budapest
2017
|
Sorozat: | Élelmiszervizsgálati közlemények
63 No. 4 |
Kulcsszavak: | Élelmiszervizsgálat - módszer |
Tárgyszavak: | |
Online Access: | http://acta.bibl.u-szeged.hu/79182 |
Tartalmi kivonat: | A nemzeti és nemzetközi fajtajegyzékben található csemegekukorica (Zea mays var. saccharata L.) hibridek fajtákra lebontott érzékszervi profiljellemzőiről, fogyasztói preferenciáiról a rendelkezésünkre álló irodalmi forrásokban ismereteink szerint csak néhány publikáció született. Kutatásunkban a mesterséges neurális hálózatok (artificial neural networks, ANNs) gyakorlati alkalmazását mutatjuk be. Vizsgálatunkban 41 fagyasztott csemegekukorica-fajtát egy szakértői érzékszervi bírálócsoport értékelt (14 fő), teljeskörű profilanalízis módszerével (MSZ ISO 11035:2001; ISO 13299:2003), 0-100-ig terjedő strukturálatlan skálán, majd nagymintás tesztben, fogyasztók (167 fő) a 41 fajta közül 6 fajtát jellemeztek kedveltség alapján, 9 elemű strukturált skálán. A mesterséges neurális hálózatok nagymennyiségű adatot igényelnek, ezért a 6 fajtára elkészült szakértői és fogyasztói adatokon 1000-szeres Monté Carlo szimulációt futtattunk, amelynek 80 %-án tréningeztük, 20 %-án pedig teszteltük a létrejött neurális hálókat. A legjobb predikciót a 4 nóduszos többrétegű előrecsatolt (multi-layer feedforward neural net, MLFN) adta, ebben az esetben adódtak a legkisebb maradékok a tréning és a teszt során, amelyeket véletlen számokon történő előrejelzéssel, és keresztellenőrzéssel is validáltunk. Ezzel a felépített modellel jeleztük előre a többi 35 kukoricafajta kedveltségi értékét. A leginkább kedveltnek a ‘Shinerock’ fajta (8,46), míg a predikciók szerint a legkevésbé kedvelt a ‘Madonna’ és a ‘Rustler’ fajták lettek 2,7-es átlagos kedveltségi értékekkel rendelkeztek (1 -9 tagú skálán). A mesterséges neurális hálózat modell megalkotása során sikeresen azonosítottuk azokat a terméktulajdonságokat is, amelyek a fogyasztói elfogadás fő mozgatórugói: édes íz, globális ízintenzitás és lédússág. Összefoglalóan megállapítható, hogy a bemutatott validált termékspecifikus mesterséges neurális hálózat lehetővé teszi az egyes fajtákra vonatkoztatott kedveltség előrejelzését. |
---|---|
Terjedelem/Fizikai jellemzők: | 1740-1751 |
ISSN: | 0422-9576 |