The influence of tip sonication on structural and morphological properties of graphene
Although ultrasound is frequently used to disperse carbon nanomaterials in suitable solvents, the propagation of high-amplitude ultrasonic vibrations from the tip sonicator was found to be aggressive and has the potential to break down graphene sheets. Here, the effects of tip sonication time on str...
Elmentve itt :
Szerzők: | |
---|---|
Testületi szerző: | |
Dokumentumtípus: | Könyv része |
Megjelent: |
2022
|
Sorozat: | Proceedings of the International Symposium on Analytical and Environmental Problems
28 |
Kulcsszavak: | Ultrahang alkalmazása - kémia |
Tárgyszavak: | |
Online Access: | http://acta.bibl.u-szeged.hu/78550 |
Tartalmi kivonat: | Although ultrasound is frequently used to disperse carbon nanomaterials in suitable solvents, the propagation of high-amplitude ultrasonic vibrations from the tip sonicator was found to be aggressive and has the potential to break down graphene sheets. Here, the effects of tip sonication time on structural and morphological properties of two types of graphene (graphene oxide and electrochemically exfoliated graphene) was investigated by UV-vis spectroscopy and Atomic Force Microscopy. It was found that the structural composition of the graphene was not affected by ultrasounds emitted from the tip sonicator even for the prolonged period of sonication (60 min). Microscopy analysis showed an increased portion of smaller graphene sheets in the sonicated samples for both types of graphene as a result of graphene sheet fragmentation caused by tip sonication. |
---|---|
Terjedelem/Fizikai jellemzők: | 323-327 |
ISBN: | 978-963-306-904-2 |