Existence of positive solutions for a class of p-Laplacian type generalized quasilinear Schrödinger equations with critical growth and potential vanishing at infinity
In this paper, we study the existence of positive solutions for the following generalized quasilinear Schrödinger equation − div(g p (u)|∇u| p−2∇u) + g p−1 (u)g (u)|∇u| p + V(x)|u| p−2u = K(x)f(u) + Q(x)g(u)|G(u)| p ∗−2G(u), x ∈ R N, where N ≥ 3, 1 < p ≤ N, p Np N−p , g ∈ C1 (R, R+), V(x) and K(x...
Elmentve itt :
Szerző: | Li Zhen |
---|---|
Dokumentumtípus: | Folyóirat |
Megjelent: |
2023
|
Sorozat: | Electronic journal of qualitative theory of differential equations
|
Kulcsszavak: | Schrödinger-egyenlet - kvázilineáris |
Tárgyszavak: | |
doi: | 10.14232/ejqtde.2023.1.3 |
Online Access: | http://acta.bibl.u-szeged.hu/78358 |
Hasonló tételek
-
Existence of solutions to a class of quasilinear Schrödinger systems involving the fractional p-Laplacian
Szerző: Xiang Mingqi, et al.
Megjelent: (2016) -
Existence of standing wave solutions for coupled quasilinear Schrödinger systems with critical exponents in RN
Szerző: Wang Li-Li, et al.
Megjelent: (2017) -
Multiplicity of solutions for quasilinear elliptic problems involving Φ-Laplacian operator and critical growth
Szerző: Li Xuewei, et al.
Megjelent: (2019) -
Infinitely many solutions to quasilinear Schrödinger equations with critical exponent
Szerző: Wang Li, et al.
Megjelent: (2019) -
Multiple small solutions for Schrödinger equations involving the p-Laplacian and positive quasilinear term
Szerző: Chong Dashuang, et al.
Megjelent: (2020)