Existence of positive solutions for a class of p-Laplacian type generalized quasilinear Schrödinger equations with critical growth and potential vanishing at infinity

In this paper, we study the existence of positive solutions for the following generalized quasilinear Schrödinger equation − div(g p (u)|∇u| p−2∇u) + g p−1 (u)g (u)|∇u| p + V(x)|u| p−2u = K(x)f(u) + Q(x)g(u)|G(u)| p ∗−2G(u), x ∈ R N, where N ≥ 3, 1 < p ≤ N, p Np N−p , g ∈ C1 (R, R+), V(x) and K(x...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerző: Li Zhen
Dokumentumtípus: Folyóirat
Megjelent: 2023
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Schrödinger-egyenlet - kvázilineáris
Tárgyszavak:
doi:10.14232/ejqtde.2023.1.3

Online Access:http://acta.bibl.u-szeged.hu/78358
Leíró adatok
Tartalmi kivonat:In this paper, we study the existence of positive solutions for the following generalized quasilinear Schrödinger equation − div(g p (u)|∇u| p−2∇u) + g p−1 (u)g (u)|∇u| p + V(x)|u| p−2u = K(x)f(u) + Q(x)g(u)|G(u)| p ∗−2G(u), x ∈ R N, where N ≥ 3, 1 < p ≤ N, p Np N−p , g ∈ C1 (R, R+), V(x) and K(x) are positive continuous functions and G(u) = R u 0 g(t)dt. By using a change of variable, we obtain the existence of positive solutions for this problem by using the Mountain Pass Theorem. Our results generalize some existing results.
ISSN:1417-3875