Asymptotic behavior of multiple solutions for quasilinear Schrödinger equations
This paper establishes the multiplicity of solutions for a class of quasilinear Schrödinger elliptic equations: −∆u + V(x)u − 2 ∆(u 2 )u = f(x, u), x ∈ R 3 where V(x) : R3 → R is a given potential and γ > 0. Furthermore, by the variational argument and L ∞-estimates, we are able to obtain the pre...
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Folyóirat |
Megjelent: |
2022
|
Sorozat: | Electronic journal of qualitative theory of differential equations
|
Kulcsszavak: | Schrödinger egyenletek |
Tárgyszavak: | |
doi: | 10.14232/ejqtde.2022.1.64 |
Online Access: | http://acta.bibl.u-szeged.hu/78349 |
Tartalmi kivonat: | This paper establishes the multiplicity of solutions for a class of quasilinear Schrödinger elliptic equations: −∆u + V(x)u − 2 ∆(u 2 )u = f(x, u), x ∈ R 3 where V(x) : R3 → R is a given potential and γ > 0. Furthermore, by the variational argument and L ∞-estimates, we are able to obtain the precise asymptotic behavior of these solutions as γ → 0. |
---|---|
ISSN: | 1417-3875 |