Positive radial solutions for a class of quasilinear Schrödinger equations in R3
This paper is concerned with the following quasilinear Schrödinger equations of the form: −∆u − u∆(u 2 ) + u = |u| p−2u, x ∈ R 3 where p ∈ (2, 12). By making use of the constrained minimization method on a special manifold, we prove that the existence of positive radial solutions of the above proble...
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Folyóirat |
Megjelent: |
2022
|
Sorozat: | Electronic journal of qualitative theory of differential equations
|
Kulcsszavak: | Schrödinger-egyenlet - kvázilineáris |
Tárgyszavak: | |
doi: | 10.14232/ejqtde.2022.1.58 |
Online Access: | http://acta.bibl.u-szeged.hu/78343 |
Tartalmi kivonat: | This paper is concerned with the following quasilinear Schrödinger equations of the form: −∆u − u∆(u 2 ) + u = |u| p−2u, x ∈ R 3 where p ∈ (2, 12). By making use of the constrained minimization method on a special manifold, we prove that the existence of positive radial solutions of the above problem for any p ∈ (2, 12). |
---|---|
ISSN: | 1417-3875 |