Positive radial solutions for a class of quasilinear Schrödinger equations in R3

This paper is concerned with the following quasilinear Schrödinger equations of the form: −∆u − u∆(u 2 ) + u = |u| p−2u, x ∈ R 3 where p ∈ (2, 12). By making use of the constrained minimization method on a special manifold, we prove that the existence of positive radial solutions of the above proble...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Wang Zhongxiang
Jia Gao
Hu Weifeng
Dokumentumtípus: Folyóirat
Megjelent: 2022
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Schrödinger-egyenlet - kvázilineáris
Tárgyszavak:
doi:10.14232/ejqtde.2022.1.58

Online Access:http://acta.bibl.u-szeged.hu/78343
Leíró adatok
Tartalmi kivonat:This paper is concerned with the following quasilinear Schrödinger equations of the form: −∆u − u∆(u 2 ) + u = |u| p−2u, x ∈ R 3 where p ∈ (2, 12). By making use of the constrained minimization method on a special manifold, we prove that the existence of positive radial solutions of the above problem for any p ∈ (2, 12).
ISSN:1417-3875