Multiple nonsymmetric nodal solutions for quasilinear Schrödinger system
In this paper, we consider the quasilinear Schrödinger system in RN (N ≥ 3): −∆u + A(x)u − 1 2 ∆(u 2 )u = 2α |u| α−2u|v| −∆v + Bv − 1 2 ∆(v 2 )v = 2β |u| |v| β−2 v, where α, β > 1, 2 < α + β < 4N N−2 , B > 0 is a constant. By using a constrained minimization on Nehari–Pohožaev set, for a...
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Folyóirat |
Megjelent: |
2022
|
Sorozat: | Electronic journal of qualitative theory of differential equations
|
Kulcsszavak: | Schrödinger rendszer - kvázilineáris, Nehari-Pohožaev halmaz |
Tárgyszavak: | |
doi: | 10.14232/ejqtde.2022.1.57 |
Online Access: | http://acta.bibl.u-szeged.hu/78342 |
Tartalmi kivonat: | In this paper, we consider the quasilinear Schrödinger system in RN (N ≥ 3): −∆u + A(x)u − 1 2 ∆(u 2 )u = 2α |u| α−2u|v| −∆v + Bv − 1 2 ∆(v 2 )v = 2β |u| |v| β−2 v, where α, β > 1, 2 < α + β < 4N N−2 , B > 0 is a constant. By using a constrained minimization on Nehari–Pohožaev set, for any given integer s ≥ 2, we construct a nonradially symmetrical nodal solution with its 2s nodal domains. |
---|---|
ISSN: | 1417-3875 |