Ground states solutions for some non-autonomous Schrödinger-Bopp-Podolsky system
In this paper we study the existence of ground states solutions for nonautonomous Schrödinger–Bopp–Podolsky system −∆u + u + λK(x)ϕu = b(x)|u| p−2u in R3 −∆ϕ + a 2∆ 2ϕ = 4πK(x)u 2 in R3 where λ > 0, 2 < p ≤ 4 and both K(x) and b(x) are nonnegative functions in R3 Assuming that lim|x|→+∞K(x) =...
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Folyóirat |
Megjelent: |
2022
|
Sorozat: | Electronic journal of qualitative theory of differential equations
|
Kulcsszavak: | Schrödinger-Bopp-Podolsky rendszer |
Tárgyszavak: | |
doi: | 10.14232/ejqtde.2022.1.51 |
Online Access: | http://acta.bibl.u-szeged.hu/78336 |
Tartalmi kivonat: | In this paper we study the existence of ground states solutions for nonautonomous Schrödinger–Bopp–Podolsky system −∆u + u + λK(x)ϕu = b(x)|u| p−2u in R3 −∆ϕ + a 2∆ 2ϕ = 4πK(x)u 2 in R3 where λ > 0, 2 < p ≤ 4 and both K(x) and b(x) are nonnegative functions in R3 Assuming that lim|x|→+∞K(x) = K∞ > 0 and lim|x|→+∞b(x) = b∞ > 0 and satisfying suitable assumptions, but not requiring any symmetry property on them. We show that the existence of a positive solution depends on the parameters λ and p. We also establish the existence of ground state solutions for the case 3.18 ≈ 1+ 73 3 < p ≤ 4. |
---|---|
ISSN: | 1417-3875 |