The existence of ground state solutions for semi-linear degenerate Schrödinger equations with steep potential well
In this article, we study the following degenerated Schrödinger equations: −∆γu + λV(x)u = f(x, u) in RN, u ∈ Eλ , where λ > 0 is a parameter, ∆γ is a degenerate elliptic operator, the potential V(x) has a potential well with bottom and the nonlinearity f(x, u) is either super-linear or sub-linea...
Elmentve itt :
Szerzők: |
Ran Ling Chen Shang-Jie Li Lin |
---|---|
Dokumentumtípus: | Folyóirat |
Megjelent: |
2022
|
Sorozat: | Electronic journal of qualitative theory of differential equations
|
Kulcsszavak: | Schrödinger-egyenlet |
Tárgyszavak: | |
doi: | 10.14232/ejqtde.2022.1.30 |
Online Access: | http://acta.bibl.u-szeged.hu/76531 |
Hasonló tételek
-
Ground state sign-changing solutions for critical Choquard equations with steep well potential
Szerző: Li Yong-Yong, et al.
Megjelent: (2022) -
Existence and asymptotic behavior of nontrivial solutions for the Klein-Gordon-Maxwell system with steep potential well
Szerző: Wen Xueping, et al.
Megjelent: (2023) -
Ground states solutions for some non-autonomous Schrödinger-Bopp-Podolsky system
Szerző: Jia Chunrong, et al.
Megjelent: (2022) -
Ground state solution of a semilinear Schrödinger system with local super-quadratic conditions
Szerző: Chen Jing, et al.
Megjelent: (2021) -
Solitary wave of ground state type for a nonlinear Klein-Gordon equation coupled with Born-Infeld theory in R
Szerző: Albuquerque Francisco S. B., et al.
Megjelent: (2020)