The existence of ground state solutions for semi-linear degenerate Schrödinger equations with steep potential well
In this article, we study the following degenerated Schrödinger equations: −∆γu + λV(x)u = f(x, u) in RN, u ∈ Eλ , where λ > 0 is a parameter, ∆γ is a degenerate elliptic operator, the potential V(x) has a potential well with bottom and the nonlinearity f(x, u) is either super-linear or sub-linea...
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Folyóirat |
Megjelent: |
2022
|
Sorozat: | Electronic journal of qualitative theory of differential equations
|
Kulcsszavak: | Schrödinger-egyenlet |
Tárgyszavak: | |
doi: | 10.14232/ejqtde.2022.1.30 |
Online Access: | http://acta.bibl.u-szeged.hu/76531 |
Tartalmi kivonat: | In this article, we study the following degenerated Schrödinger equations: −∆γu + λV(x)u = f(x, u) in RN, u ∈ Eλ , where λ > 0 is a parameter, ∆γ is a degenerate elliptic operator, the potential V(x) has a potential well with bottom and the nonlinearity f(x, u) is either super-linear or sub-linear at infinity in u. The existence of ground state solution be obtained by using the variational methods. |
---|---|
Terjedelem/Fizikai jellemzők: | 15 |
ISSN: | 1417-3875 |