The existence of ground state solutions for semi-linear degenerate Schrödinger equations with steep potential well

In this article, we study the following degenerated Schrödinger equations: −∆γu + λV(x)u = f(x, u) in RN, u ∈ Eλ , where λ > 0 is a parameter, ∆γ is a degenerate elliptic operator, the potential V(x) has a potential well with bottom and the nonlinearity f(x, u) is either super-linear or sub-linea...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Ran Ling
Chen Shang-Jie
Li Lin
Dokumentumtípus: Folyóirat
Megjelent: 2022
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Schrödinger-egyenlet
Tárgyszavak:
doi:10.14232/ejqtde.2022.1.30

Online Access:http://acta.bibl.u-szeged.hu/76531
Leíró adatok
Tartalmi kivonat:In this article, we study the following degenerated Schrödinger equations: −∆γu + λV(x)u = f(x, u) in RN, u ∈ Eλ , where λ > 0 is a parameter, ∆γ is a degenerate elliptic operator, the potential V(x) has a potential well with bottom and the nonlinearity f(x, u) is either super-linear or sub-linear at infinity in u. The existence of ground state solution be obtained by using the variational methods.
Terjedelem/Fizikai jellemzők:15
ISSN:1417-3875