Forensic authorship classification by paragraph vectors of speech transcriptions

In forensic comparison, document classification techniques are used mainly for authorship classification and author profiling. In the present study, we aim to introduce paragraph vector modelling (by Doc2Vec) into the likelihoodratio framework paradigm of forensic evidence comparison. Transcriptions...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Sztahó Dávid
Beke András
Szaszák György
Fejes Attila
Testületi szerző: Magyar számítógépes nyelvészeti konferencia (18.) (2022) (Szeged)
Dokumentumtípus: Könyv része
Megjelent: 2022
Sorozat:Magyar Számítógépes Nyelvészeti Konferencia 18
Kulcsszavak:Nyelvészet - számítógép alkalmazása
Tárgyszavak:
Online Access:http://acta.bibl.u-szeged.hu/75880
Leíró adatok
Tartalmi kivonat:In forensic comparison, document classification techniques are used mainly for authorship classification and author profiling. In the present study, we aim to introduce paragraph vector modelling (by Doc2Vec) into the likelihoodratio framework paradigm of forensic evidence comparison. Transcriptions of spontaneous speech recording are used as input to paragraph vector extraction model training. Logistic regression models are trained based on cosine distances of paragraph vector pairs to predict the same and different author origin probability. Results are evaluated according to different speaking styles (transcriptions of speech tasks available in the dataset). Cllr and equal error rate values (lowest ones are 0.47 and 0.11, respectively) show that the method can be useful as a feature for forensic authorship comparison and may extend the voice comparison methods for speaker verification.
Terjedelem/Fizikai jellemzők:271-279
ISBN:978-963-306-848-9