On the strong (C, α) laws of large numbers
We give a necessary and sufficient condition for the strong (C, α) law of large numbers with real order α > 0 for weighted sums of independent random variables satisfying the property α-WH analogous to, though weaker than, the Hartman’s type property. In particular, if a sequence of random variab...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Published: |
2021
|
Series: | Acta scientiarum mathematicarum
87 No. 3-4 |
Kulcsszavak: | Valószínűségszámítás, Matematika |
Subjects: | |
doi: | 10.14232/actasm-021-271-y |
Online Access: | http://acta.bibl.u-szeged.hu/75860 |
Summary: | We give a necessary and sufficient condition for the strong (C, α) law of large numbers with real order α > 0 for weighted sums of independent random variables satisfying the property α-WH analogous to, though weaker than, the Hartman’s type property. In particular, if a sequence of random variables is two-sided, then the strong (C, α) law of large numbers for the sequence can also be characterized by the ergodic Hilbert transform. |
---|---|
Physical Description: | 679-707 |
ISSN: | 2064-8316 |