On lattice isomorphisms of orthodox semigroups

Two semigroups are lattice isomorphic if the lattices of their subsemigroups are isomorphic, and a class of semigroups is lattice closed if it contains every semigroup which is lattice isomorphic to some semigroup from that class. An orthodox semigroup is a regular semigroup whose idempotents form a...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerző: Goberstein Simon M.
Dokumentumtípus: Cikk
Megjelent: 2021
Sorozat:Acta scientiarum mathematicarum 87 No. 3-4
Kulcsszavak:Algebra, Matematika
Tárgyszavak:
doi:10.14232/actasm-020-558-7

Online Access:http://acta.bibl.u-szeged.hu/75846
Leíró adatok
Tartalmi kivonat:Two semigroups are lattice isomorphic if the lattices of their subsemigroups are isomorphic, and a class of semigroups is lattice closed if it contains every semigroup which is lattice isomorphic to some semigroup from that class. An orthodox semigroup is a regular semigroup whose idempotents form a subsemigroup. We prove that the class of all orthodox semigroups in which every nonidempotent element has infinite order is lattice closed.
Terjedelem/Fizikai jellemzők:367-379
ISSN:2064-8316