Existence and multiplicity of nontrivial solutions to the modified Kirchhoff equation without the growth and Ambrosetti-Rabinowitz conditions

The paper focuses on the modified Kirchhoff equation a + b Z RN |∇u| 2 dx� ∆u − u∆(u 2 ) + V(x)u = λ f(u), x ∈ R N, where a, b > 0, V(x) ∈ C(RN, R) and λ < 1 is a positive parameter. We just assume that the nonlinearity f(t) is continuous and superlinear in a neighborhood of t = 0 and at infin...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Wang Zhongxiang
Jia Gao
Dokumentumtípus: Folyóirat
Megjelent: 2021
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Kirchhoff-egyenlet, Differenciálegyenlet
Tárgyszavak:
doi:10.14232/ejqtde.2021.1.83

Online Access:http://acta.bibl.u-szeged.hu/75804
Leíró adatok
Tartalmi kivonat:The paper focuses on the modified Kirchhoff equation a + b Z RN |∇u| 2 dx� ∆u − u∆(u 2 ) + V(x)u = λ f(u), x ∈ R N, where a, b > 0, V(x) ∈ C(RN, R) and λ < 1 is a positive parameter. We just assume that the nonlinearity f(t) is continuous and superlinear in a neighborhood of t = 0 and at infinity. By applying the perturbation method and using the cutoff function, we get existence and multiplicity of nontrivial solutions to the revised equation. Then we use the Moser iteration to obtain existence and multiplicity of nontrivial solutions to the above original Kirchhoff equation. Moreover, the nonlinearity f(t) may be supercritical.
Terjedelem/Fizikai jellemzők:18
ISSN:1417-3875