Well-posedness for a fourth-order equation of Moore-Gibson-Thompson type

In this paper, we completely characterize, only in terms of the data, the well-posedness of a fourth order abstract evolution equation arising from the Moore– Gibson–Thomson equation with memory. This characterization is obtained in the scales of vector-valued Lebesgue, Besov and Triebel–Lizorkin fu...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Lizama Carlos
Murillo Marina
Dokumentumtípus: Folyóirat
Megjelent: 2021
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Differenciálegyenlet
Tárgyszavak:
doi:10.14232/ejqtde.2021.1.81

Online Access:http://acta.bibl.u-szeged.hu/75802
Leíró adatok
Tartalmi kivonat:In this paper, we completely characterize, only in terms of the data, the well-posedness of a fourth order abstract evolution equation arising from the Moore– Gibson–Thomson equation with memory. This characterization is obtained in the scales of vector-valued Lebesgue, Besov and Triebel–Lizorkin function spaces. Our characterization is flexible enough to admit as examples the Laplacian and the fractional Laplacian operators, among others. We also provide a practical and general criteria that allows L p–L q -well-posedness.
Terjedelem/Fizikai jellemzők:18
ISSN:1417-3875