Adsorption kinetics and mechanism analysis of cyan printing dye on polyethylene microplastics
Printing on polymer materials might result with generation of coloured wastewater, enriched with a certain amount of microplastics in a form of polyethylene or polypropylene. In that way, microplastics may acquire the function of carriers of synthetic dyes, heavy metals and other polluting substance...
Elmentve itt :
Szerzők: | |
---|---|
Testületi szerző: | |
Dokumentumtípus: | Könyv része |
Megjelent: |
2020
|
Sorozat: | Proceedings of the International Symposium on Analytical and Environmental Problems
26 |
Kulcsszavak: | Kémia |
Tárgyszavak: | |
Online Access: | http://acta.bibl.u-szeged.hu/73981 |
Tartalmi kivonat: | Printing on polymer materials might result with generation of coloured wastewater, enriched with a certain amount of microplastics in a form of polyethylene or polypropylene. In that way, microplastics may acquire the function of carriers of synthetic dyes, heavy metals and other polluting substances. In this paper, kinetics and adsorption mechanism of printing Cyan dye on polyethylene (powdered and granulated), as one of the most common types of microplastics, were investigated. The experiments were performed in a batch mode, in laboratory conditions. Based on the obtained results, a similar adsorption rate degree of selected printing dye was determined on granulated (adsorbed amount was 48.04 µg/g) and powdered material (adsorbed amount was 44.32 µg/g). The adsorption data were fitted well by pseudo-second-order kinetics, while isotherm studies were evaluated using two models: Langmuir and Freundlich. Freundlich and Langmuir equations showed similar performances to fit the solid/liquid distribution of Cyan dye on powdered polyethylene (R2 = 0.987), whereas Langmuir equation showed slightly better performances for granulated polyethylene than Freundlich equation. |
---|---|
Terjedelem/Fizikai jellemzők: | 147-151 |
ISBN: | 978-963-306-771-0 |