On the class of almost (L) limited operators

In this paper, we introduce and study the class of almost (L) limited operators, these are operators from a Banach space into a Banach lattice whose adjoint carries disjoint (L) and weak* null sequences to norm null ones. We establish some characterizations of this class of operators, and present so...

Full description

Saved in:
Bibliographic Details
Main Authors: Oughajji Fatima Zahra
Fahri Kamal El
Moussa Mohammed
Format: Article
Published: 2021
Series:Acta scientiarum mathematicarum 87 No. 1-2
Kulcsszavak:Matematika
doi:10.14232/actasm-020-564-y

Online Access:http://acta.bibl.u-szeged.hu/73924
Description
Summary:In this paper, we introduce and study the class of almost (L) limited operators, these are operators from a Banach space into a Banach lattice whose adjoint carries disjoint (L) and weak* null sequences to norm null ones. We establish some characterizations of this class of operators, and present some connections between this class of operators and almost limited operators. After that, we prove that almost (L) limited operators from a Banach lattice into a σDedekind complete one which are lattice homomorphism are exactly operators whose adjoint carries almost (L) sets into L weakly compact ones. Finally, we derive some characterizations of a σ-Dedekind complete Banach lattice whose dual has order continuous norm.
Physical Description:207-218
ISSN:2064-8316