Positive linear maps on Hilbert space operators and noncommutative Lp spaces
We extend some inequalities for normal matrices and positive linear maps related to the Russo-Dye theorem. The results cover the case of some positive linear maps Φ on a von Neumann algebra M such that Φ(X) is unbounded for all nonzero X ∈ M.
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Cikk |
Megjelent: |
2021
|
Sorozat: | Acta scientiarum mathematicarum
87 No. 1-2 |
Kulcsszavak: | Matematika |
doi: | 10.14232/actasm-020-671-1 |
Online Access: | http://acta.bibl.u-szeged.hu/73923 |
Tartalmi kivonat: | We extend some inequalities for normal matrices and positive linear maps related to the Russo-Dye theorem. The results cover the case of some positive linear maps Φ on a von Neumann algebra M such that Φ(X) is unbounded for all nonzero X ∈ M. |
---|---|
Terjedelem/Fizikai jellemzők: | 195-206 |
ISSN: | 2064-8316 |