Infinite families of non-monogenic trinomials
Let f(x) ∈ Z[x] be monic and irreducible over Q, with deg(f) = n. Let K = Q(θ), where f(θ) = 0, and let ZK denote the ring of integers of K. We say f(x) is non-monogenic if � 1, θ, θ2 , . . . , θn−1 is not a basis for ZK. By extending ideas of Ratliff, Rush and Shah, we construct infinite families o...
Elmentve itt :
Szerző: | |
---|---|
Dokumentumtípus: | Cikk |
Megjelent: |
2021
|
Sorozat: | Acta scientiarum mathematicarum
87 No. 1-2 |
Kulcsszavak: | Matematika |
doi: | 10.14232/actasm-021-463-3 |
Online Access: | http://acta.bibl.u-szeged.hu/73918 |
LEADER | 01012nab a2200205 i 4500 | ||
---|---|---|---|
001 | acta73918 | ||
005 | 20211115153934.0 | ||
008 | 211115s2021 hu o 0|| eng d | ||
022 | |a 2064-8316 | ||
024 | 7 | |a 10.14232/actasm-021-463-3 |2 doi | |
040 | |a SZTE Egyetemi Kiadványok Repozitórium |b hun | ||
041 | |a eng | ||
100 | 1 | |a Jones Lenny | |
245 | 1 | 0 | |a Infinite families of non-monogenic trinomials |h [elektronikus dokumentum] / |c Jones Lenny |
260 | |c 2021 | ||
300 | |a 95-105 | ||
490 | 0 | |a Acta scientiarum mathematicarum |v 87 No. 1-2 | |
520 | 3 | |a Let f(x) ∈ Z[x] be monic and irreducible over Q, with deg(f) = n. Let K = Q(θ), where f(θ) = 0, and let ZK denote the ring of integers of K. We say f(x) is non-monogenic if � 1, θ, θ2 , . . . , θn−1 is not a basis for ZK. By extending ideas of Ratliff, Rush and Shah, we construct infinite families of non-monogenic trinomials. | |
695 | |a Matematika | ||
856 | 4 | 0 | |u http://acta.bibl.u-szeged.hu/73918/1/math_087_numb_001-002_095-105.pdf |z Dokumentum-elérés |