Infinite families of non-monogenic trinomials

Let f(x) ∈ Z[x] be monic and irreducible over Q, with deg(f) = n. Let K = Q(θ), where f(θ) = 0, and let ZK denote the ring of integers of K. We say f(x) is non-monogenic if � 1, θ, θ2 , . . . , θn−1 is not a basis for ZK. By extending ideas of Ratliff, Rush and Shah, we construct infinite families o...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerző: Jones Lenny
Dokumentumtípus: Cikk
Megjelent: 2021
Sorozat:Acta scientiarum mathematicarum 87 No. 1-2
Kulcsszavak:Matematika
doi:10.14232/actasm-021-463-3

Online Access:http://acta.bibl.u-szeged.hu/73918
LEADER 01012nab a2200205 i 4500
001 acta73918
005 20211115153934.0
008 211115s2021 hu o 0|| eng d
022 |a 2064-8316 
024 7 |a 10.14232/actasm-021-463-3  |2 doi 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a eng 
100 1 |a Jones Lenny 
245 1 0 |a Infinite families of non-monogenic trinomials  |h [elektronikus dokumentum] /  |c  Jones Lenny 
260 |c 2021 
300 |a 95-105 
490 0 |a Acta scientiarum mathematicarum  |v 87 No. 1-2 
520 3 |a Let f(x) ∈ Z[x] be monic and irreducible over Q, with deg(f) = n. Let K = Q(θ), where f(θ) = 0, and let ZK denote the ring of integers of K. We say f(x) is non-monogenic if � 1, θ, θ2 , . . . , θn−1 is not a basis for ZK. By extending ideas of Ratliff, Rush and Shah, we construct infinite families of non-monogenic trinomials. 
695 |a Matematika 
856 4 0 |u http://acta.bibl.u-szeged.hu/73918/1/math_087_numb_001-002_095-105.pdf  |z Dokumentum-elérés