Infinite families of non-monogenic trinomials

Let f(x) ∈ Z[x] be monic and irreducible over Q, with deg(f) = n. Let K = Q(θ), where f(θ) = 0, and let ZK denote the ring of integers of K. We say f(x) is non-monogenic if � 1, θ, θ2 , . . . , θn−1 is not a basis for ZK. By extending ideas of Ratliff, Rush and Shah, we construct infinite families o...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerző: Jones Lenny
Dokumentumtípus: Cikk
Megjelent: 2021
Sorozat:Acta scientiarum mathematicarum 87 No. 1-2
Kulcsszavak:Matematika
doi:10.14232/actasm-021-463-3

Online Access:http://acta.bibl.u-szeged.hu/73918
Leíró adatok
Tartalmi kivonat:Let f(x) ∈ Z[x] be monic and irreducible over Q, with deg(f) = n. Let K = Q(θ), where f(θ) = 0, and let ZK denote the ring of integers of K. We say f(x) is non-monogenic if � 1, θ, θ2 , . . . , θn−1 is not a basis for ZK. By extending ideas of Ratliff, Rush and Shah, we construct infinite families of non-monogenic trinomials.
Terjedelem/Fizikai jellemzők:95-105
ISSN:2064-8316