On the boundedness of B-maximal commutators, commutators of B-Riesz potentials and B-singular integral operators in modified B-Morrey spaces
In this paper we consider the generalized shift operator associated to the Laplace–Bessel differential operator ∆B and investigate B-maximal commutators, commutators of B-Riesz potentials and commutators of B-singular integral operators associated to the generalized shift operator. The boundedness o...
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Cikk |
Megjelent: |
2020
|
Sorozat: | Acta scientiarum mathematicarum
86 No. 3-4 |
Kulcsszavak: | Matematika |
doi: | 10.14232/actasm-020-224-y |
Online Access: | http://acta.bibl.u-szeged.hu/73902 |
Tartalmi kivonat: | In this paper we consider the generalized shift operator associated to the Laplace–Bessel differential operator ∆B and investigate B-maximal commutators, commutators of B-Riesz potentials and commutators of B-singular integral operators associated to the generalized shift operator. The boundedness of the B-maximal commutator Mb,γ and the commutator [b, Aγ] of the B-singular integral operator on the modified B-Morrey spaces Lep,λ,γ(R n k,+) for all 1 < p < ∞ when b ∈ BMOγ(R n k,+) are proved. In addition, we obtain that the commutator [b, Iα,γ] of the B-Riesz potential Iα,γ is bounded from the modified B-Morrey space Lep,λ,γ(R n k,+) to Leq,λ,γ(R n k,+), 1 < p < n+|γ|−λ n+|γ| ≤ 1 p − 1 q ≤ n+|γ|−λ and from the space Le1,λ,γ(R n k,+) to WLeq,λ,γ(R n k,+), n+|γ| ≤ 1 − 1 q ≤ n+|γ|−λ |
---|---|
Terjedelem/Fizikai jellemzők: | 521-547 |
ISSN: | 2064-8316 |