Qualitative properties and global bifurcation of solutions for a singular boundary value problem

This paper deals with a singular, nonlinear Sturm–Liouville problem of the form {A(x)u 0 (x)} 0 + λu(x) = f(x, u(x), u 0 (x)) on (0, 1) where A is positive on (0, 1] but decays quadratically to zero as x approaches zero. This is the lowest level of degeneracy for which the problem exhibits behaviour...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerző: Stuart Charles A.
Dokumentumtípus: Folyóirat
Megjelent: 2020
Sorozat:Electronic journal of qualitative theory of differential equations : special edition 4 No. 90
Kulcsszavak:Differenciálegyenlet - határérték probléma, Bifurkáció
doi:10.14232/ejqtde.2020.1.90

Online Access:http://acta.bibl.u-szeged.hu/73780
Leíró adatok
Tartalmi kivonat:This paper deals with a singular, nonlinear Sturm–Liouville problem of the form {A(x)u 0 (x)} 0 + λu(x) = f(x, u(x), u 0 (x)) on (0, 1) where A is positive on (0, 1] but decays quadratically to zero as x approaches zero. This is the lowest level of degeneracy for which the problem exhibits behaviour radically different from the regular case. In this paper earlier results on the existence of bifurcation points are extended to yield global information about connected components of solutions.
Terjedelem/Fizikai jellemzők:36
ISSN:1417-3875