Qualitative properties and global bifurcation of solutions for a singular boundary value problem
This paper deals with a singular, nonlinear Sturm–Liouville problem of the form {A(x)u 0 (x)} 0 + λu(x) = f(x, u(x), u 0 (x)) on (0, 1) where A is positive on (0, 1] but decays quadratically to zero as x approaches zero. This is the lowest level of degeneracy for which the problem exhibits behaviour...
Elmentve itt :
Szerző: | |
---|---|
Dokumentumtípus: | Folyóirat |
Megjelent: |
2020
|
Sorozat: | Electronic journal of qualitative theory of differential equations : special edition
4 No. 90 |
Kulcsszavak: | Differenciálegyenlet - határérték probléma, Bifurkáció |
doi: | 10.14232/ejqtde.2020.1.90 |
Online Access: | http://acta.bibl.u-szeged.hu/73780 |
Tartalmi kivonat: | This paper deals with a singular, nonlinear Sturm–Liouville problem of the form {A(x)u 0 (x)} 0 + λu(x) = f(x, u(x), u 0 (x)) on (0, 1) where A is positive on (0, 1] but decays quadratically to zero as x approaches zero. This is the lowest level of degeneracy for which the problem exhibits behaviour radically different from the regular case. In this paper earlier results on the existence of bifurcation points are extended to yield global information about connected components of solutions. |
---|---|
Terjedelem/Fizikai jellemzők: | 36 |
ISSN: | 1417-3875 |