Automatic punctuation restoration with BERT models
We present an approach for automatic punctuation restoration with BERT models for English and Hungarian. For English, we conduct our experiments on Ted Talks, a commonly used benchmark for punctuation restoration, while for Hungarian we evaluate our models on the Szeged Treebank dataset. Our best mo...
Elmentve itt :
Szerzők: | |
---|---|
Testületi szerző: | |
Dokumentumtípus: | Könyv része |
Megjelent: |
2021
|
Sorozat: | Magyar Számítógépes Nyelvészeti Konferencia
17 |
Kulcsszavak: | Nyelvészet - számítógép alkalmazása |
Tárgyszavak: | |
Online Access: | http://acta.bibl.u-szeged.hu/73358 |
Tartalmi kivonat: | We present an approach for automatic punctuation restoration with BERT models for English and Hungarian. For English, we conduct our experiments on Ted Talks, a commonly used benchmark for punctuation restoration, while for Hungarian we evaluate our models on the Szeged Treebank dataset. Our best models achieve a macro-averaged F1-score of 79.8 in English and 82.2 in Hungarian. Our code is publicly available. |
---|---|
Terjedelem/Fizikai jellemzők: | 63-73 |
ISBN: | 978-963-306-781-9 |