Automatic punctuation restoration with BERT models

We present an approach for automatic punctuation restoration with BERT models for English and Hungarian. For English, we conduct our experiments on Ted Talks, a commonly used benchmark for punctuation restoration, while for Hungarian we evaluate our models on the Szeged Treebank dataset. Our best mo...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Nagy Attila
Bial Bence
Ács Judit
Testületi szerző: Magyar számítógépes nyelvészeti konferencia (17.) (2021) (Szeged)
Dokumentumtípus: Könyv része
Megjelent: 2021
Sorozat:Magyar Számítógépes Nyelvészeti Konferencia 17
Kulcsszavak:Nyelvészet - számítógép alkalmazása
Tárgyszavak:
Online Access:http://acta.bibl.u-szeged.hu/73358
Leíró adatok
Tartalmi kivonat:We present an approach for automatic punctuation restoration with BERT models for English and Hungarian. For English, we conduct our experiments on Ted Talks, a commonly used benchmark for punctuation restoration, while for Hungarian we evaluate our models on the Szeged Treebank dataset. Our best models achieve a macro-averaged F1-score of 79.8 in English and 82.2 in Hungarian. Our code is publicly available.
Terjedelem/Fizikai jellemzők:63-73
ISBN:978-963-306-781-9