Evaluating contextualized language models for Hungarian

We present an extended comparison of contextualized language models for Hungarian. We compare huBERT, a Hungarian model against 4 multilingual models including the multilingual BERT model. We evaluate these models through three tasks, morphological probing, POS tagging and NER. We find that huBERT w...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Ács Judit
Lévai Dániel
Nemeskey Dávid Márk
Kornai András
Testületi szerző: Magyar számítógépes nyelvészeti konferencia (17.) (2021) (Szeged)
Dokumentumtípus: Könyv része
Megjelent: 2021
Sorozat:Magyar Számítógépes Nyelvészeti Konferencia 17
Kulcsszavak:Nyelvészet - számítógép alkalmazása
Tárgyszavak:
Online Access:http://acta.bibl.u-szeged.hu/73354
Leíró adatok
Tartalmi kivonat:We present an extended comparison of contextualized language models for Hungarian. We compare huBERT, a Hungarian model against 4 multilingual models including the multilingual BERT model. We evaluate these models through three tasks, morphological probing, POS tagging and NER. We find that huBERT works better than the other models, often by a large margin, particularly near the global optimum (typically at the middle layers). We also find that huBERT tends to generate fewer subwords for one word and that using the last subword for token-level tasks is generally a better choice than using the first one.
Terjedelem/Fizikai jellemzők:15-28
ISBN:978-963-306-781-9