Periodic solutions of relativistic Liénard-type equations
In this paper, we prove that the relativistic Liénard-type equation d dt x˙ |x˙| p−2 1 − |x˙| p � p−1 p + f (x) x˙ + g (x) = 0, p > 1, and its special case, relativistic Van der Pol-type equation, have a periodic solution. Our results are inspired by the results obtained by Mawhin and Villari [...
Elmentve itt :
Szerző: | |
---|---|
Dokumentumtípus: | Folyóirat |
Megjelent: |
2020
|
Sorozat: | Electronic journal of qualitative theory of differential equations
|
Kulcsszavak: | Liénard-típusú egyenlet, Differenciálegyenlet |
doi: | 10.14232/ejqtde.2020.1.38 |
Online Access: | http://acta.bibl.u-szeged.hu/70151 |
Tartalmi kivonat: | In this paper, we prove that the relativistic Liénard-type equation d dt x˙ |x˙| p−2 1 − |x˙| p � p−1 p + f (x) x˙ + g (x) = 0, p > 1, and its special case, relativistic Van der Pol-type equation, have a periodic solution. Our results are inspired by the results obtained by Mawhin and Villari [Nonlinear Anal. 160(2017), 16–24] and extend their results to this more general case. |
---|---|
ISSN: | 1417-3875 |