Periodic solutions of relativistic Liénard-type equations

In this paper, we prove that the relativistic Liénard-type equation d dt x˙ |x˙| p−2 1 − |x˙| p � p−1 p  + f (x) x˙ + g (x) = 0, p > 1, and its special case, relativistic Van der Pol-type equation, have a periodic solution. Our results are inspired by the results obtained by Mawhin and Villari [...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerző: Aktaş Mustafa F.
Dokumentumtípus: Folyóirat
Megjelent: 2020
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Liénard-típusú egyenlet, Differenciálegyenlet
doi:10.14232/ejqtde.2020.1.38

Online Access:http://acta.bibl.u-szeged.hu/70151
Leíró adatok
Tartalmi kivonat:In this paper, we prove that the relativistic Liénard-type equation d dt x˙ |x˙| p−2 1 − |x˙| p � p−1 p  + f (x) x˙ + g (x) = 0, p > 1, and its special case, relativistic Van der Pol-type equation, have a periodic solution. Our results are inspired by the results obtained by Mawhin and Villari [Nonlinear Anal. 160(2017), 16–24] and extend their results to this more general case.
ISSN:1417-3875