Fractional eigenvalue problems on RN

Let N ≥ 2 be an integer. For each real number s ∈ (0, 1) we denote by (−∆) s the corresponding fractional Laplace operator. First, we investigate the eigenvalue problem (−∆) su = λV(x)u on RN, where V : RN → R is a given function. Under suitable conditions imposed on V we show the existence of an un...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerző: Grecu Andrei
Dokumentumtípus: Folyóirat
Megjelent: 2020
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Differenciálegyenlet
doi:10.14232/ejqtde.2020.1.26

Online Access:http://acta.bibl.u-szeged.hu/69530
Leíró adatok
Tartalmi kivonat:Let N ≥ 2 be an integer. For each real number s ∈ (0, 1) we denote by (−∆) s the corresponding fractional Laplace operator. First, we investigate the eigenvalue problem (−∆) su = λV(x)u on RN, where V : RN → R is a given function. Under suitable conditions imposed on V we show the existence of an unbounded, increasing sequence of positive eigenvalues. Next, we perturb the above eigenvalue problem with a fractional (t, p)-Laplace operator, when t ∈ (0, 1) and p ∈ (1, ∞) are such that t < s and s − N/2 = t − N/p. We show that when the function V is nonnegative on RN, the set of eigenvalues of the perturbed eigenvalue problem is exactly the unbounded interval (λ1, ∞), where λ1 stands for the first eigenvalue of the initial eigenvalue problem.
ISSN:1417-3875