Strong solutions to the nonhomogeneous Boussinesq equations for magnetohydrodynamics convection without thermal diffusion

We are concerned with the Cauchy problem of nonhomogeneous Boussinesq equations for magnetohydrodynamics convection in R2 . We show that there exists a unique local strong solution provided the initial density, the magnetic field, and the initial temperature decrease at infinity sufficiently quickly...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerző: Zhong Xin
Dokumentumtípus: Folyóirat
Megjelent: 2020
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Differenciálegyenlet
doi:10.14232/ejqtde.2020.1.24

Online Access:http://acta.bibl.u-szeged.hu/69528
Leíró adatok
Tartalmi kivonat:We are concerned with the Cauchy problem of nonhomogeneous Boussinesq equations for magnetohydrodynamics convection in R2 . We show that there exists a unique local strong solution provided the initial density, the magnetic field, and the initial temperature decrease at infinity sufficiently quickly. In particular, the initial data can be arbitrarily large and the initial density may contain vacuum states.
ISSN:1417-3875