Solitary wave of ground state type for a nonlinear Klein-Gordon equation coupled with Born-Infeld theory in R

In this paper we prove the existence of nontrivial ground state solution for a nonlinear Klein–Gordon equation coupled with Born–Infeld theory in R2 involving unbounded or decaying radial potentials. The approach involves variational methods combined with a Trudinger–Moser type inequality and a symm...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Albuquerque Francisco S. B.
Chen Shang-Jie
Li Lin
Dokumentumtípus: Folyóirat
Megjelent: 2020
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Differenciaegyenlet, Klein-Gordon egyenlet, Born-Infeld elmélet, Trudinger-Moser egyenlőtlenség, Mountain-Pass tétel
doi:10.14232/ejqtde.2020.1.12

Online Access:http://acta.bibl.u-szeged.hu/69516
Leíró adatok
Tartalmi kivonat:In this paper we prove the existence of nontrivial ground state solution for a nonlinear Klein–Gordon equation coupled with Born–Infeld theory in R2 involving unbounded or decaying radial potentials. The approach involves variational methods combined with a Trudinger–Moser type inequality and a symmetric criticality type result.
ISSN:1417-3875