Solitary wave of ground state type for a nonlinear Klein-Gordon equation coupled with Born-Infeld theory in R
In this paper we prove the existence of nontrivial ground state solution for a nonlinear Klein–Gordon equation coupled with Born–Infeld theory in R2 involving unbounded or decaying radial potentials. The approach involves variational methods combined with a Trudinger–Moser type inequality and a symm...
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Folyóirat |
Megjelent: |
2020
|
Sorozat: | Electronic journal of qualitative theory of differential equations
|
Kulcsszavak: | Differenciaegyenlet, Klein-Gordon egyenlet, Born-Infeld elmélet, Trudinger-Moser egyenlőtlenség, Mountain-Pass tétel |
doi: | 10.14232/ejqtde.2020.1.12 |
Online Access: | http://acta.bibl.u-szeged.hu/69516 |
Tartalmi kivonat: | In this paper we prove the existence of nontrivial ground state solution for a nonlinear Klein–Gordon equation coupled with Born–Infeld theory in R2 involving unbounded or decaying radial potentials. The approach involves variational methods combined with a Trudinger–Moser type inequality and a symmetric criticality type result. |
---|---|
ISSN: | 1417-3875 |