Zilber’s Theorem for planar lattices, revisited

Zilber’s Theorem states that a finite lattice L is planar if and only if it has a complementary order relation. We provide a new proof for this crucial result and discuss some applications, including a canonical form for finite planar lattices and an analysis of coverings in the left-right order.

Elmentve itt :
Bibliográfiai részletek
Szerzők: Baker Kirby A.
Grätzer George A.
Dokumentumtípus: Cikk
Megjelent: 2020
Sorozat:Acta scientiarum mathematicarum
Kulcsszavak:Matematika, Algebra
Tárgyszavak:
doi:10.14232/actasm-019-230-9

Online Access:http://acta.bibl.u-szeged.hu/69364
Leíró adatok
Tartalmi kivonat:Zilber’s Theorem states that a finite lattice L is planar if and only if it has a complementary order relation. We provide a new proof for this crucial result and discuss some applications, including a canonical form for finite planar lattices and an analysis of coverings in the left-right order.
Terjedelem/Fizikai jellemzők:81-104
ISSN:2064-8316