Zilber’s Theorem for planar lattices, revisited
Zilber’s Theorem states that a finite lattice L is planar if and only if it has a complementary order relation. We provide a new proof for this crucial result and discuss some applications, including a canonical form for finite planar lattices and an analysis of coverings in the left-right order.
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Cikk |
Megjelent: |
2020
|
Sorozat: | Acta scientiarum mathematicarum
|
Kulcsszavak: | Matematika, Algebra |
Tárgyszavak: | |
doi: | 10.14232/actasm-019-230-9 |
Online Access: | http://acta.bibl.u-szeged.hu/69364 |
Tartalmi kivonat: | Zilber’s Theorem states that a finite lattice L is planar if and only if it has a complementary order relation. We provide a new proof for this crucial result and discuss some applications, including a canonical form for finite planar lattices and an analysis of coverings in the left-right order. |
---|---|
Terjedelem/Fizikai jellemzők: | 81-104 |
ISSN: | 2064-8316 |