Positive solutions for (p, 2)-equations with superlinear reaction and a concave boundary term
We consider a nonlinear boundary value problem driven by the (p, 2)- Laplacian, with a (p − 1)-superlinear reaction and a parametric concave boundary term (a “concave-convex” problem). Using variational tools (critical point theory) together with truncation and comparison techniques, we prove a bifu...
Elmentve itt :
Szerzők: |
Papageorgiou Nikolaos S. Scapellato Andrea |
---|---|
Dokumentumtípus: | Folyóirat |
Megjelent: |
2020
|
Sorozat: | Electronic journal of qualitative theory of differential equations
|
Kulcsszavak: | Pozitív megoldás, Differenciaegyenlet |
doi: | 10.14232/ejqtde.2020.1.4 |
Online Access: | http://acta.bibl.u-szeged.hu/66422 |
Hasonló tételek
-
Nonlinear resonant problems with an indefinite potential and concave boundary condition
Szerző: Papageorgiou Nikolaos S., et al.
Megjelent: (2020) -
A positive solution of asymptotically periodic Schrödinger equations with local superlinear nonlinearities
Szerző: Li Gui-Dong, et al.
Megjelent: (2020) -
Existence and multiplicity of positive solutions for singular φ-Laplacian superlinear problems with nonlinear boundary conditions
Szerző: Hai Dang Dinh, et al.
Megjelent: (2021) -
Positive solutions for the (n, p) boundary value problem
Szerző: Yng Bo
Megjelent: (2009) -
Multiplicity of solutions for a class of quasilinear elliptic equations with concave and convex terms in R
Szerző: Severo Uberlandio B.
Megjelent: (2008)